
Nyquist vs Banchy-Crooks
This Julia Pluto-notebook is part of the supplementary material for the paper

Dirk Oliver Theis, “Proper” Shift Rules for Derivatives of Perturbed-Parametric Quantum Evolutions,
arXiv:2207.01587

Copyright and license information
Copyright lies with the University of Tartu, Estonia, and, to the extent mandated by law, with the
author. The University of Tartu has applied for patent protection for some of the methods and
processes encoded in this software.

Permission is hereby granted to view, run, and experiment with this document. Rights to use either
the software or the algorithms, methods, and processes encoded in it are not  granted.

Address inquiries to:

University of Tartu

Centre for Entrepreneurship and Innovation

Narva mnt 18

51009 Tartu linn,

Tartu linn, Tartumaa

Estonia

+372 737 4809

eik@ut.ee

https://eik.ut.ee

Introduction
This Pluto notebook is concerned with methods to estimate derivatives, with respect to θ of
parameterized quantum expectation-values of the form

The unitary  expresses a quantum evolution with Hamiltonian  for a
time .

It implements, for the sake of comparison, the following methods:

Banchi-Crooks' Stochastic Approximate Parameter Shift Rule  arXiv:2005.10299 and
the truncated Nyquist shift rule  arXiv:2207.01587.

When implemented on quantum devices, these methods are estimators, i.e., the output is random
and the expected output is off from the sought derivative by a (hopefully only) small bias
(approximation error).

In this comparison, we are not interested in the stochastic properties (which, on paper, are essentially
identical) but in the magnitude of the approximation error.

Both methods require large magnitudes of the  parameter in order to approximate the derivative
well. We will compare the effect of the magnitude of  on the approximation error in both methods.

📕

Nyqu
Intro
Expe

Pe
Ex
Ra
An

Impl
Ex
BC

Impl
He
Tr

Visua
Comp

https://arxiv.org/abs/2207.01587
https://arxiv.org/abs/2005.10299
https://arxiv.org/abs/2207.01587


Julia & Pluto setup

PlotlyBase 0.8.18 is not compatible with this version of Plots. The declared 
compatibility is 0.7.

We use syntactic sugar to make Julia look more like math: " " instead of " " etc, " " instead of "!"...

Expectation-value function and data
We make available a Julia function , along with helpers and variants.

We take  for the Planck constant, i.e., . You don't like it, suck it.

Data = @NamedTuple{M,ϱ,A,B}  is a helper data structure to hold the four Hermitian matrices.

Perturbed-parametric unitary function

Function U(t::ℝ, θ::ℝ ; A::Hermitian{ℂ}, B::Hermitian{ℂ}) ::Matrix{ℂ}

U

Expectation-value function

Function

	 f(t::ℝ, θ::ℝ

      ;     D::Data ) ::ℝ

f

Randomized input data
To compare the methods, in ( ) above, we choose

 a random Hermitian matrix with eigenvalues in ;
 a random positive definite trace-1 matrix
 a random Hermitian matrix with eigenvalues in ;
 a random Hermitian matrix with iid standard-normal complex entries.

This setting corresponds to the most common application in quantum computing: The observable is a
Pauli operator, and the 1-qubit drive is a Pauli rotation. (Our setting is negligibly more general.)

begin
	 using PlutoUI 

	 using Plots 

	 import PlotlyBase 

	 plotly()
	 md"""
	
	 #### Julia & Pluto setup
	 """
end

 
 

 

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

using LinearAlgebra : Hermitian, Diagonal, tr, eigvals, eigvecs, isposdef ⋅

using QuadGK      # for numerical integration ⋅

using Zygote      # for automatic differentiation (to test against) ⋅

using Statistics  # for percentiles and whatnot ⋅

📕

Nyqu
Intro
Expe

Pe
Ex
Ra
An

Impl
Ex
BC

Impl
He
Tr

Visua
Comp



Function gimme_data(d ::Int) :: Data

gimme_data

Let's make some data, just for fun...

The dimension is 5 .

Give me a new set of matrices, hop, hop!

Eigenvalues:

M: [-1.0000000000000002, -0.9999999999999997, -0.9999999999999994, 0.9999999999999992, 
ϱ: [0.004813290237324075, 0.02503293603676747, 0.1217502520654448, 0.296027079841554, 0
A: [-1.0000000000000007, -0.9999999999999998, -0.9999999999999989, 1.0, 1.0000000000000
B: [-2.690058192248532, -1.4578896192902717, -0.10268151540595387, 0.4736110967284113, 

... and plot it...

... or not: Plotting takes several seconds. Do you really want to plot? Yes

Plotting:

−20 −10 0 10 20
0.0

0.2

0.4

0.6

0.8

1.0

−0.6

−0.4

−0.2

0

0.2

θ

t

Analytic derivative by Julia

Function j∂(θ ; D::Data)  makes available the "true" derivative of the expectation value
function  for the given data, using Julia's automatic differentiation based on code
reflection (Zygote package).

j∂

Implementation of Banchi-Crooks

📕

Nyqu
Intro
Expe

Pe
Ex
Ra
An

Impl
Ex
BC

Impl
He
Tr

Visua
Comp



Expectation-value function for BC ASPSR
fₐₛₚ2()  is the function under the integral in Banchi-Crooks ASPSR rule to approximate . For the

derivative of  as in ( ), in fₐₛₚ2( 𝑠,θ,ε ) , the unitary  in ( ) is replaced by

With the " " matching the superscript plus and minus in the following expression, the function
fₐₛₚ2()  is used in the BC's ASPSR as follows:

Function

	 fₐₛₚ2( s::ℝ, θ ::ℝ, ε ::ℝ

	 	 	 	 ;

                D ::Data   ) ::@NamedTuple{plus::ℝ,minus::ℝ}

returns the results of two evaluations of the "Approximate Stochastic Parameter" function as in
Algorithm 3 of Banchi & Crooks; the two values are those for 𝑚=±1.

fₐₛₚ2

BC deterministic derivative
We implement Banchi-Crooks pseudo-shift rule deterministically, with the "shots" (Monte-Carlo
integration) replaced by numerical integration (QuadGK package).

The BC method has a parameter, , affecting the accuracy.

Function bcₐₚₓ(θ::ℝ ; ε ::ℝ, order ::Int, D ::Data ) ::@NamedTuple{∂::ℝ,err::ℝ}

Original BC pseudo-shift rule for 𝐻 with eigenvalues ±1.

Performs the numerical, deterministic approximation of the derivative at θ .

Numerical integration adds the parameter order : It goes into the QuadGK numerical
integration package (the log₁₀ of the maximum number of function evaluations).

Return value:  Named tuple w/ 1st entry the derivative, ∂ , 2nd entry the numerical error of the
integration, err .

bcₐₚₓ

Implementation of Nyquist shift rule

Helpers

Function

	 f₁2(θ::ℝ, a::ℝ

                   ; T ::ℝ,

	 	 	 	 	  D ::Data ) ::@NamedTuple{plus::ℝ,minus::ℝ}

two f -values: 𝑓(1,θ−𝑎), and 𝑓(1,θ+𝑎); each one of them is replaced by 0 if the parameter value
falls outside of the interval .

f₁2

📕

Nyqu
Intro
Expe

Pe
Ex
Ra
An

Impl
Ex
BC

Impl
He
Tr

Visua
Comp



Truncated Nyquist shift rule
We approximate the (analytical!) Nyquist derivative by truncating the sum at the evaluation points of
the Banchi-Crooks derivative,  (where  is as in bcₐₚₓ() ).

Function nyₜᵣᵤₙ(θ ; ε , D::Data)::ℝ

Approximates the Nyquist derivative deterministically by truncating the sum in such a way
that the parameter values stay within  for . In other way, the parameter
values stay within the same window as in Banchi-Crooks.

nyₜᵣᵤₙ

Visualization
Define the quantities:

Plot window:  -1.5   1.5  
Number of plot points in the window: 200

Banchi-Crooks  where  1.0  and  1

Numerical integration order parameter 10

Expectation value function and derivative (error-free automatic differentiation by Julia):

−1.5 −1.0 −0.5 0.0 0.5 1.0

−0.6

−0.3

0.0

0.3

0.6

θ

bl
ac

k:
 f(

1,
θ)

, b
lu

e:
 ∂

₂f(
1,

θ)

Plot BC error

−1.5 −1.0 −0.5 0.0 0.5 1.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

θ

ab
so

lu
te

 e
rro

r

📕

Nyqu
Intro
Expe

Pe
Ex
Ra
An

Impl
Ex
BC

Impl
He
Tr

Visua
Comp



Plot truncated-Nyquist error (green)
Include BC-error in plot? 

−1.5 −1.0 −0.5 0.0 0.5 1.0
−2

−1

0

1

θ

ab
so

lu
te

 e
rro

r

Comparison

Data structures and functions for creating the data.

Function make_data(l; dim=2, RNDDATA_ITER=100, SAMPLE_PTS, order=20)

Parameters

l  determines the range of ε's, it will be 𝑥⋅10ˡ for 𝑥∈[1,10[
SAMPLE_PTS  is an iterator or iterable or so.

Return value:

Named tuple (εs,errors_bc,errors_ny,true_vals)
θs  is a vector of the θ's
errors_𝑥𝑦  is a 2-dim array of data points
true_vals  is a 2-dim array of the true derivatives

In the arrays, 1st dim is repetition idx, 2nd dim is θ-idx

make_data

const Stats_t
NamedTuple{(:mean, :median, :perc01, :perc10, :perc25, :perc90, :perc99, :min, :max), NTupl

 = 

Function get_stats(θs,errors_bc,errors_ny,true_vals ; relative=false)

Input here is the output of make_data()

Return value is a named tuple (bc_err, ny_err, bc_err_minus_ny_err)  of vectors (indexed
corresponding to θs ) of Stats_t

get_stats

Let's get cracking!

📕

Nyqu
Intro
Expe

Pe
Ex
Ra
An

Impl
Ex
BC

Impl
He
Tr

Visua
Comp



How much data should be produced?

 where  1

Dimension: 7

Number of random expectation-value functions (  as described above) 100

Number of sample points: 50

Now making data. This will take some time. The terminal will show error messages (such as numerical
issues).

Relative errors: 

The next figure shows

BC (red): 1st percentile, 10th percentile , median , 90th percentile 
Ny (green): median, 90th percentile , 99th percentile , max 

Show it at all? 

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0

1

2

θ

R
el

at
iv

e 
er

ro
rs

The next figure shows statistics for the difference of absolute error for each individual data point, 
. The quantity is positive if Nyquist is better than BC, otherwise negative. The statistics

derived from that data set which are shown in the figures are, top to bottom:

mean (black) 
median (blue) 
25th-percentile (red) 
10th-percentile (green) 
1st-percentile (magenta) 
minimum (cyan) .

📕

Nyqu
Intro
Expe

Pe
Ex
Ra
An

Impl
Ex
BC

Impl
He
Tr

Visua
Comp



0.000 0.125 0.250 0.375 0.500 0.625 0.750 0.875 1.000 1.125 1.250
−1.0
−0.8
−0.6
−0.4
−0.2
0.0
0.2
0.4
0.6
0.8
1.0

θ

R
el

at
iv

e 
er

ro
r d

iff
er

en
ce

s 📕

Nyqu
Intro
Expe

Pe
Ex
Ra
An

Impl
Ex
BC

Impl
He
Tr

Visua
Comp


